Nonasymptotic bounds on the estimation error for regenerative MCMC algorithms∗
نویسندگان
چکیده
MCMC methods are used in Bayesian statistics not only to sample from posterior distributions but also to estimate expectations. Underlying functions are most often defined on a continuous state space and can be unbounded. We consider a regenerative setting and Monte Carlo estimators based on i.i.d. blocks of a Markov chain trajectory. The main result is an inequality for the mean square error. We also consider confidence bounds. We first derive the results in terms of the asymptotic variance and then bound the asymptotic variance for both uniformly ergodic and geometrically ergodic Markov chains. AMS 2000 subject classifications: Primary 60J10, 65C05; secondary 62L12.
منابع مشابه
Nonasymptotic bounds on the estimation error of MCMC algorithms
We address the problem of upper bounding the mean square error of MCMC estimators. Our analysis is non-asymptotic. We first establish a general result valid for essentially all ergodic Markov chains encountered in Bayesian computation and a possibly unbounded target function f. The bound is sharp in the sense that the leading term is exactly σ as(P, f)/n, where σ 2 as(P, f) is the CLT asymptoti...
متن کاملExponential inequalities for unbounded functions of geometrically ergodic Markov chains. Applications to quantitative error bounds for regenerative Metropolis algorithms
The aim of this note is to investigate the concentration properties of unbounded functions of geometrically ergodic Markov chains. We derive concentration properties of centered functions with respect to the square of Lyapunov’s function in the drift condition satisfied by the Markov chain. We apply the new exponential inequalities to derive confidence intervals for MCMC algorithms. Quantitativ...
متن کاملNonasymptotic bounds on the L2 error of neural network regression estimates
The estimation of multivariate regression functions from bounded i.i.d. data is considered. TheL2 error with integration with respect to the design measure is used as an error criterion. The distribution of the design is assumed to be concentrated on a finite set. Neural network estimates are defined by minimizing the empirical L2 risk over various sets of feedforward neural networks. Nonasympt...
متن کاملAutomatic Bounding Estimation in Modified Nlms Algorithm
Modified Normalized Least Mean Square (MNLMS) algorithm, which is a sign form of NLMS based on set-membership (SM) theory in the class of optimal bounding ellipsoid (OBE) algorithms, requires a priori knowledge of error bounds that is unknown in most applications. In a special but popular case of measurement noise, a simple algorithm has been proposed. With some simulation examples the performa...
متن کاملApproximate Supermodularity Bounds for Experimental Design
This work provides performance guarantees for the greedy solution of experimental design problems. In particular, it focuses on Aand E-optimal designs, for which typical guarantees do not apply since the mean-square error and the maximum eigenvalue of the estimation error covariance matrix are not supermodular. To do so, it leverages the concept of approximate supermodularity to derive nonasymp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009